Uniqueness Property for Spherical Homogeneous Spaces
نویسنده
چکیده
Let G be a connected reductive group. Recall that a homogeneous G-space X is called spherical if a Borel subgroup B ⊂ G has an open orbit on X . To X one assigns certain combinatorial invariants: the weight lattice, the valuation cone and the set of B-stable prime divisors. We prove that two spherical homogeneous spaces with the same combinatorial invariants are equivariantly isomorphic. Further, we recover the group of G-equivariant automorphisms of X from these invariants.
منابع مشابه
Uniqueness Properties for Spherical Varieties
The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely...
متن کاملCMB Anisotropy of Spherical Spaces
The first-yearWMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M3 = S3/Γ, given by the quotient of S3 by a group Γ of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Γ correspon...
متن کاملCoupled coincidence point in ordered cone metric spaces with examples in game theory
In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملInverse uniqueness results for Schrödinger operators using de Branges theory
We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.
متن کامل